Stabilization and limit theorems for geometric functionals of Gibbs point processes
نویسنده
چکیده
Given a Gibbs point process P on R having a weak enough potential Ψ, we consider the random measures μλ := P x∈P∩Qλ ξ(x,P ∩Qλ)δx/λ1/d , where Qλ := [−λ /2, λ/2] is the volume λ cube and where ξ(·, ·) is a translation invariant stabilizing functional. Subject to Ψ satisfying a localization property and translation invariance, we establish weak laws of large numbers for λ−1μλ(f), f a bounded test function on R , and weak convergence of λμλ(f), suitably centered, to a Gaussian field acting on bounded test functions. The result yields limit laws for geometric functionals on Gibbs point processes including the Strauss and area interaction point processes as well as more general point processes defined by the WidomRowlinson and hard-core model. We provide applications to random sequential packing on Gibbsian input, to functionals of Euclidean graphs, networks, and percolation models on Gibbsian input, and to quantization via Gibbsian input.
منابع مشابه
Limit theorems for geometric functionals of Gibbs point processes
Observations are made on a point process Ξ in R in a window Qλ of volume λ. The observation, or ‘score’ at a point x, here denoted ξ(x, Ξ), is a function of the points within a random distance of x. When the input Ξ is a Poisson or binomial point process, the large λ limit theory for the total score ∑ x∈Ξ∩Qλ ξ(x, Ξ ∩Qλ), when properly scaled and centered, is well understood. In this paper we es...
متن کاملBrownian limits, local limits, extreme value and variance asymptotics for convex hulls in the ball
The paper [40] establishes an asymptotic representation for random convex polytope geometry in the unit ball Bd, d ≥ 2, in terms of the general theory of stabilizing functionals of Poisson point processes as well as in terms of the so-called generalized paraboloid growth process. This paper further exploits this connection, introducing also a dual object termed the paraboloid hull process. Via ...
متن کاملBrownian Limits, Local Limits and Variance Asymptotics for Convex Hulls in the Ball by Pierre Calka,
Schreiber and Yukich [Ann. Probab. 36 (2008) 363–396] establish an asymptotic representation for random convex polytope geometry in the unit ball Bd , d ≥ 2, in terms of the general theory of stabilizing functionals of Poisson point processes as well as in terms of generalized paraboloid growth processes. This paper further exploits this connection, introducing also a dual object termed the par...
متن کاملCLT for Lipschitz-Killing curvatures of excursion sets of Gaussian random fields
Our interest in this paper is to explore limit theorems for various geometric functionals of excursion sets of isotropic Gaussian random fields. In the past, limit theorems have been proven for various geometric functionals of excursion sets/sojourn times ( see [4, 13, 14, 18, 22, 25] for a sample of works in such settings). The most recent addition being [6] where a central limit theorem (CLT)...
متن کاملCOUPLED FIXED POINT THEOREMS FOR RATIONAL TYPE CONTRACTIONS VIA C-CLASS FUNCTIONS
In this paper, by using C-class functions, we will present a coupled xed problem in b-metric space for the single-valued operators satisfying a generalized contraction condition. First part of the paper is related to some xed point theorems, the second part presents the uniqueness and existence for the solution of the coupled xed point problem and in the third part we...
متن کامل